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Finite Sum Representations for Partial Derivatives 
of Special Functions with Respect to Parameters 

By R. G. Buschman 

Abstract. The Mellin transformation is used as a method for discovery of cases where 
the partial derivatives with respect to parameters for certain Whittaker and Bessel 
functions can be expressed in terms of finite sums involving these functions. These 
results are easily generalized to the G-function, from which, by specialization, formulas 
involving hypergeometric and other functions can be obtained. 

1. Introduction. In a recent paper, Laurenzi [4] obtained finite sum ex- 
pansions for the partial derivative of W,,1/2(Z) with respect to K at a positive 
integral values of K expressed in terms of W1/2(z). He also obtained analogs 

for M,11/2 (z). Similar expressions are known for certain other functions; for 

example, Abramowitz and Stegun [1] list partial derivatives with respect to 

order for the Bessel functions J,, Y,, I,, and K, at nonnegative integral values 
of v and at v = ? I and for the Legendre functions aPl/Ov and aP7-1/Ov at 
v = 0 and aP7-1/av at v = 1. The purpose of our paper is to indicate a method 

of discovering such formulas and their generalizations by use of the properties 
of the Mellin transformation along with simple identities involving the r 
and i1 functions. 

For notation, definitions, and formulas, refer to [1], [2]. The formula for 

the ,6 function, which is of particular use in our manipulations, is 

N (_ 1)kl'N! r(a) 
(1) 

{(a+N)-+(k=1 (k(N)-k)! rE((+k)* 

This comes from formula (30) on p. 19 of [2] where the series terminates if 
z = N, a nonnegative integer. The symbols j, k, 1, m, n, p, q, M, N shall 

represent integers throughout our work. 

Our technique of discovery consists of the formal use of the tables of 

Mellin transforms, manipulations of these transforms with an investigation 
of those cases where (1) can be used, and the inversion by use of tables. 

Rigor could then be supplied either by justifying the steps or by induction 
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where recurrence formulas are known, which is the case for many of the 
special functions of interest. Alternatively, we could work with Mellin- 
Barnes integral representations. We illustrate the manipulations for the 
simple cases and then merely state the generalizations to G-functions where 
they are obtained by directly analogous steps. 

2. Partial Derivatives of W,,(z) with Respect to the First Parameter. From 
the tables of Mellin transforms [3, p. 337, formula (8)], we have 

(2) iex/2W, (x) - =r( +I +s)r(-u +I +S)/r(-K +1 +S) =g(S), 

valid for Re(s) > I Re(u) I- . If we differentiate with respect to the parameter 
K, we obtain 

(3) }Jex/2(/K) W,,(x) I =g(s)4(-K + 1 +S). 

Noting also the effect of differentiation with respect to s of a Mellin transform 
of a function, we have 

(4) - I eX/2 , (x) log X 

=((S)()( +2 +S) + (-# +2 +S) - (-K +1 +S)). 

The combination of (3) and (4) gives us 

A {e-x/2((8/8K) WK,, (x) -W,, (x) log x) 
(5) =h(s) = g(S) (4(- K + 1 +S) - 4(, ++ +S) 

+ P(-K +1 +S) - + - I +i +S)). 

If both K + U -2 and K - - are integers, then we can use (1) to express 
the differences of the i1 functions, which appear in (5), as finite sums. Con- 
sequently, we may as well set K =N/2 +2 and u =M/2 with M and N of 
the same parity. There are four cases to consider, depending upon the signs 
of M+ N and of M - N (these correspond to the cases of the signs of c - a -1 
and of a for the hypergeometric function ' (a, c; x)). 

If M+N ? 0, the application of (1) allows simplification of the r-function 
quotient so that, from (2), we have 

g(s) (41(-NI2 + I +s )- 4(MI2 + i + s)) 
(6) 

-A 
N12+M12 (_-1) k (N1 2 +M/ 2) !_ ex/2 

WN212-,/ E 
- k(N/2 + M/2 -k) ! e W/+/-s/() 

similarly for N - m ? 0 we have 

g(s) C i Nn2 + g +)S, (),-(MIw 2 + +bS)) 
(7) ~ ~~~~N12-M12 (_-1) k (N/ 2 -M/ 2) ! 

_X/2WN212kM2x 
E = k(N/2 - M/2 - k) !e WN21-kM()|- 

Combining (5), (6), and (7), we obtain 
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d EM/2(X) 
aK jc=N/2+1/2 

N/2+M/2 (_ 1)k(N/ 2 +M/ 2)! 

(8) =l k(N/2+M/2-k)! WN/2+1/2-kM/2(x) 
N/2-M/2 (_ 1)k (N/2 - M/ 2)! 

? S k(N/2 -M/ 2-k) ! WN2+112-kM/2(X) 

+ WN/2+1/2,M/2 (X) log X 

for -N ? M ? N and M and N integers of like parity. Formula (8) reduces 
to the result of Laurenzi [4, formula (15), p. 131], for M= 1, N = 2n -1. 

On the other hand, if - (M + N) _ 0, the simplification of (6) does not 
occur; however, we have 

g(s) (0(- N12 + a +s) - (M/2 + i +s)) 
-M/2-N/2 ( 1)kl(M/2 -N/2)! F(-M/2+?+s) F2(M/2+ +s) 

k=1 k(-M/2 -N/2-k)! r(M/2 +i +k +s) F(-N/2 +? +s) 
(9 M12-N12 ( _ 1)k-l(_ M/2 - N12) ! 

= 
v: 

k=1 k(-M/2-N/2-k)! 
. { 

(- 1) -M-kxl/2-M/2D-M-k(e-x/2X1/2-kWM/2+N/2+1/20(x)) 

where we have used formulas (3) and (9) on p. 307 of [3] combined in the form 

(10) $ {-xl1-D(x-f(x)) I = (s-a) i I f(x) I 

to interpret the ratio r(- M/2 + 2 +s)/F(M/2 +1 +k +s) and where we have 
assumed further that N - M ? 0. Thus, for M ? N < - M, the first sum of 
(8) is replaced by 

-M/2 N12 (-1)M-1(_ M/2 -N/2) ! 

(11) k=1 k(- M/2 - N/2 - k)! 
X1/2-M/2D-M-k (e -x/2X1/2-k WM/2+N/2+1/2,0 (X)). 

Further, for - M ? N _ M, the second sum of (8) is analogously replaced 
by a sum of the form of (11) with M replaced by - M. These two forms can 
be rewritten in several manners by use of the derivative and recurrence 
formulas on pp. 22, 27, and 28 of [5]; one example of this is to use (2.4.16) to 
obtain 

D-M-k (x-ke-x/2x-1/2 WM/2+N/2+1/2,o (x)) 

-M-k (-M-k)t 

(12) = 1! (- M k -)! D-M-k(xk) Dl(e /x/2x/2 WM/2+N/2+1/2,0(x)) 

-M-k (-M-k) !+(-1) IMk( _ M-1+-/ )! 
1=0 l!(-M-k -I)!(k -1)! 

X M-1/2+l/2 e`X2 WM/2+N/2+1/2+1/2;1/2 (XW 
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Substituting (12) into (11) and interchanging the order of summations, we 
obtain in place of (11) the simpler form 

(13) X-k(_M!M/2?1/2(x (13) E (- M -1) C1(-Mx) WM/2+N/2+1/2+1/2,1/2(X) 

where M ? N ? - M and C1(-M) can be written in terms of the Gauss 
function 

(14) CA(-M) =1 -2F1(-M-1, -M/2 -N/2; -M; 1). 

Consequently, we have 

- W,M/2(X) 
aK K=N/2+1/2 

-M-1 
()!C,(M) M212 

(15) E 1 (AM 1) X WM,2+N/2+1/2+1/2,2(X) 
1=0 

+ E k(N/2 -M/2-k) N/2+1/2 kM/2(X) + WN/2+1/2,M/2(X) 1gX 

for M _ N '-M, M and N integers of like parity, and with C( -M) given 
by (14). Analogously, 

a 
EWM/2(X) N 

aK K=N12+112 
N/2+M/2 (_ 1)k (N/2 + M/2)! 

(16) -E k (N/2 + M/2 - k)! WN/2+1/2-k,M/2(X) 

-1 
E ! (AlI) xM/2+/2 W-M/2+N/2+1/2+1/2,1/2 (X) + WN/2+1/2,M/2 (X) 1og X 

E1' (Al-i1) 

for - M ? N ? M, M and N integers of like parity, and with C1(M) given 
by (14). 

For N ? M _ - N, both sums of (8) must be replaced by sums which 
involve the G'-function; reduction to the Whittaker function does not seem 
to be possible, except when one of the equalities holds, cases covered already 
by (15) and (16). 

3. Partial Differentiation of W,,,(x) with Respect to the Second Parameter 
and of K (x) with Respect to Order. An appropriate analog of (5) for differ- 
entiation with respect to u, again setting K = N/2 + I and u = M/2, seems to be 

/ { 4d) WN/2+1/2,,.(X) 1|Z=M12 } 
(17) =g(s) (,6 (M/2 + i + s) -A (- N12 + i + s) 

+P(-N/2 +i +s) -P(-M/2 +i +s)), 

in which merely addition and subtraction of suitable terms is used to produce 
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differences involving the {-function so that (1) can be applied. An analog 
of (8) is easily obtained in the form 

dWN/2+1/2,,u(X) | 
// 

=_ E 
)- 

k(N/2+M2 
+ /)! WN/2+1/2-k,M/2(x) 

(18) N/2-M/2 (_1)kl(N/2-M/2)! 
l~zq2+1/~() __/2 k(/ ? / -k) WN/2+1/2-k,M/2 (X) 

k=+ k (N/2 + M/2 - k)! WN/2+1/2.kM,2(X) 

for - N ? M _ N, M and N integers of like parity. Analogs of (15) and (16) 
can also be written down directly, but, again, the case N ' M ? - N seems 
not to be representable in terms of Whittaker functions. This is somewhat 
disappointing in view of the possibility of connecting these formulas to the 
partial derivative with respect to order of the Bessel function of the third 
kind by means of the relation 

(19) K,(x/2) -(/x)112W0,,(X). 

The formula 

a N _I __1 ________ 
k(X (20) K,(x) NNl = E (x/)k KA(x) 

is given, for example, as formula (9.6.45) on p. 377 of [1]. This can be ob- 
tained by similar manipulations of Mellin transforms starting from formula 
(26), rather than (28), on p. 331 of the tables [3]. Using formula (5) on p. 307 
of [3] and using ideas developed in our formulas (9) -(12), we have 

(a / (d/) K, (2X1/2) |1v=N I 

=2-2r(N/2 +s)r(-N/2 +s)(t(N/2 +s) -#(-N/2 +s)) 

N! N ()k-1 r(N/2+s) r2(-N/2-+-s) 
(21) - 2- k(N - k)! r(-N/2 +k +s) 2 

- N! N (_1)N XN12 N-k-k K 112 
2 klk(N-k)! - /D (x K02x2))j 

If, in a manner analogous to (12), the derivative of order N - k is represented 
as a sum, the order of summation interchanged, and the inner sum then 
simplified to the value 1, we obtain a formula equivalent to (20). 

4. Generalizations to the G-Function. Since the Mellin transform of the 
G-function is a quotient of products of r-functions, it seems a natural 
direction for generalization of these partial derivative formulas. The methods 
used to discover formulas (8), (18), and (20) can be used for the following 
generalizations. 

If m ' 2, n > 0, NJ _ 0, M1 > 0, a > maxjj<n Re(aj) -1, 
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(1-M) +1 Gnml,1+n a +Mj, .* *,a +Mmal +N1, . . ,an +Nn) 
afl+1.-a 

(22) j=1 ky=1 kj(My -kj ~s 
t anioan, ma f 

* 4x Mi, . ,a +Mmsal +N,,, - **.an +NnJ 

L {^r L w t Gnm l,m+n 

(23) kj G:4lM+1~j -bkj - 

as ..,an,a + 
* Vx a +Ml, .. * a +Mm~al +Njq * * ,aj +Nn-j *a N 

(23) (bd1,.k., ,-N/2\ Gmm+n x tofodifcaton alon thuseeoharirdveomn of formulas (9)onp20of[] 

If M and N are of the same parity,-N < M < Nn m _ 2, n <p, then 

O (x al,**-,ap1, -NN2 a PI /2, -v/, bq =M/2 

(24) N/2'M/2 (_ 1)x (N/2 + M(/2)! Gm n ( a ,ap1, -N/2 +k 
kE k (N/2 + M/2-k)! P\ M12, - M12,b3, *b 

N! N/1 (-G-1 (N/2 M12)! mpan a,, -,ap-1,-N12 k 
2 _ kl(N12 M/2-Nk)2! N |M/2,-M/2, b3 * 

If m t 2s Nfoml 0, we obtuat 

( GGn (x a )G+..., ,+ap N 
dv vq\1/2, -v/29kip **A Yb =N 

N! N (_1NX/ N-k {XN12-kGmn IX | 
(2) 2 k=l k (N -k)! \ pv x 

-N12,1-N/2,b3,*-q J' 

N! N-1 fim~n 1al, *-ap\ 
2 1= o! l(N -I) -p~q 

I-N/2,-N12,b3, * ',bqJ 

In these formulas, it should be noted that forms somewhat different in 
appearance can be obtained by the use of the relations 

(26) X'fGp,n (x | a )=Gp, n (x b+s, ,,+) 
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(27) Gpm (x- | X)=Gqpm (x -a, ,a 

Among the special cases of (22), (24), and (25) other than (8), (18), and 
(20), we note that if we set M= N = 1, m = q = 3, n =0, p = 2, ai=*, 
b3 -2 in (24), we have 

(28) -KV(x/2) | =(r/x) /'ex/'Eix), 
dv Iv=1/2 

which is equivalent to formula (10.2.34) on p. 445 of [1]. 
As a further example, we display a formula involving the hypergeometric 

function of Gauss, from which other special cases can be obtained. By use 
of (26) with (25) if we let m=p=q=2, n=1, a, =-a, =2=C-a, N',0 
a-N/2 not zero or a negative integer, we have 

a 
-2F1(a +v/2, a-v/2; c; z) 
aV Iv=N 

(29) !_N_ F (l +f- N/2) (29) = l2 I!(N-l)1'(a?N/2) 2F1(l+a-N/2,a-N/2;c;z) 

-i ((a +N/2) -(a-N/2))2F1(a +N/2, a-N/2; c; z). 

Since the hypergeometric function is defined by a series, we could alternatively 
derive (29) by manipulations on the series which are analogs of those used 
on the Mellin transforms. To illustrate this, we consider 

S (=(a+v/2)l~a -/2) 2F1(a +v/2, a -v/2; c; u)) 

(30) 0 F(a + N/2 + n) r(a-N/2 + n) 

n=O F(c +n) 

Un 1 
- - - (#(a +N/2 +n) -(a-N/2 +n)) 

so that, if we apply formula (1) and interchange the order of the summations, 
we obtain 

N! N (1)k-1 F(a+N/2+n)12(a-N/2+n) u" 
S 2 k (N-k) ! F, (c+n)Fr(a-N/2+k+rn) n! 

N! N (-)k-1U-v-N/2 

2 k=1 k(N-k)! 

(31) . F2( -N/2 +n) (an-N/2 +n +k)Nk n 

n=O F(c +n)n 

N! 
N 

(-l)k-1u-v-N/2 

2 k=l k(N-k)! 

(U2DU)N-k(uk . U? N/22 F1 (a -N/2,a -N/ 2; c; u)). 
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If we next expand the differential operator (u2Du)N-k which is applied to 
the product, we have 

(D) N-k (Uk 
Uv 

u-N12 2F1 (aNI2, ff NI 2; c; W)) 
N-k (N k\ 

) (U2D )N-k-l(Uk) (U2D )I(uf-N/2 2F1 (- N/2 ff- N/2; c; u)) 

(3)N-k /Nk\ (N -I-i)! 
NE, (k-I 1) ! UN-' . u?-N/22F, (I + r-N/2,a -N/2; c; U) 

1=0 I k - ) 

The substitution from (32) into (31), a change of the order of the summations, 
and simplification gives us 

(N ) =_ -N/ )'(.N 2F1 ( + O N/2, / -N/2; c; u). 

With the expansion of the partial derivative in (30), we see that (29) can 
then be obtained. 

As a final example, we note that 2F1 can be expressed in terms of Gegenbauer 
functions C." (see Section 3.15) of [2]), so that (29) can be rewritten 

a 1 
- or +P/2(y) I -- ( o(1 r + N/2) -t( -N/2)) C% +N/2(Y) 
Ov =N 2 

(34) N!'~ 1'i(l+2- ) +N12 
IV +2 1=0 l! (N -1) r(2,a) 

for a - N/2 not an integer and N > 0; also in terms of Legendre functions 

Ps/2 P 1/2 (Y) | = -- (4da +N/2) -# (a -N/2)) PNI2-112 (Y) 
Pv P==N 2 

(35) N! N-1 21/2-N/2r(I + a. - N/2) r(1/2 - N/2 +aff +1/2) 
+ 
2- 1 I !(N-l) r(a +N/2)Ir(a +1/2) 

(y2 -1) N/4-1/4p/1/2-+N/2-1/2(Y) 

for a.-N/2 not zero or a negative integer and N _ 0. 
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